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ABSTRACT

Recently, the real-world applications of reinforcement learn-
ing (RL) have seen the problem of taking actions in an out-of-
distribution (OOD) state. However, most existing research is
limited to take actions to narrow the visited training distribu-
tion and OOD, and does not consider the efficiency to choose
such actions. In this paper, we propose a novel approach,
called Self-Supervised Reinforcement Learning for OOD re-
covery via Auxiliary Reward (SRL-AR), to address this is-
sue. By leveraging cumulative reward, we force the represen-
tations to discriminate state-action pairs with different returns
as auxiliary task. Then, the auxiliary reward calculated from
the auxiliary loss is used to generate a new policy that can
effectively handle OOD situations. Moreover, we show that
our method outperforms prior works in terms of asymptotic
performance and sample efficiency on MuJoCo tasks.

Index Terms— Self-Supervised Learning, Reinforce-
ment Learning, Out-of-Distribution Recovery, Auxiliary Re-
ward

1. INTRODUCTION

Through trial and error interaction with the environment, re-
inforcement learning (RL) provides a promising method for
solving problems in the field of decision-making and con-
trol. In recent years, RL has achieved remarkable success in
various domains such as autonomous driving [1, 2], robotics
[3, 4], continuous control tasks [5, 6], and multi-agent sys-
tems [7, 8]. However, RL algorithms often struggle when de-
ployed in real-world scenarios due to the presence of out-of-
distribution (OOD) states, which are states that significantly
deviate from the training distribution. OOD states can arise
from unforeseen environmental changes, novel situations, and
adversarial attacks. Addressing the challenge of OOD recov-
ery is crucial to ensure the robustness and generalization of
RL agent [9], as their performance can deteriorate when en-
countering OOD states.
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Fig. 1: OOD recovery scenario. RL agent recovers from OOD
situations.

Recently, several works have proposed methods to pre-
vent agents from encountering OOD states in RL. Kahn et
al. [10] and Lütjens et al. [11] proposed RL with model pre-
dictive control (MPC) to prevent uncertain scenarios like col-
lisions. They calculated model uncertainty for motion primi-
tives and used MPC to choose actions based on cost and un-
certainty. Henaff et al. [12] penalized high uncertainty tra-
jectories during learning to keep the agent within the desired
distribution. Kang et al. [13] combined density modeling and
Lyapunov stability to mitigate distribution shifts in learning-
based control. Castaneda et al. [14] proposed to learn a task-
agnostic policy filter that prevents the system from entering
OOD states. However, the main focus of these methods is to
prevent the agents from encountering OOD states, failing to
solve the problem of trained agents that have already found
themselves in OOD states. Even though there are currently a
few studies [9, 15] addressing this aspect by taking actions to
narrow the visited training distribution and OOD, they do not
consider the efficiency to choose such actions.

In this paper, we introduce a self-supervised RL ap-
proach, called Self-Supervised Reinforcement Learning for
OOD recovery via Auxiliary Reward (SRL-AR), which aims
to improve the agent’s ability to recover from OOD situ-
ations. By incorporating auxiliary rewards and leveraging
self-supervised learning, SRL-AR provides a stable learning
signal, enabling RL agent to learn a policy that handles OOD
states more efficiently. As shown in Figure 1, this is the sce-
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nario we focus on. Our main contributions are summarized
as follows:

• We introduce the self-supervised state-action abstrac-
tion based on return distribution, which effectively
forces the learned representations to discriminate state-
action pairs with different returns.

• We propose a self-supervised reinforcement learning
approach, SRL-AR, which incorporates standard RL
algorithms with the auxiliary self-supervised state-
action abstraction learning task, enabling RL agent to
handle OOD states.

• We present experimental results on MuJoCo tasks. The
results show that SRL-AR effectively enables the agent
to recover from OOD situations, and outperforms prior
works in the sample efficiency.

2. PRELIMINARY

We consider RL problem as a Markov Decision Process
(MDP), which is a tuple < S,A, P,R, µ, γ >. Such tu-
ple specifies the state space S, the action space A, the state
transition probability P (st+1|st, at), the reward function
R(rt|st, at), the initial state distribution µ ∈ ∆(S) and the
discount factor γ. The policy π(at|st) specifies the action
selection probability on each state. We use pπ(τ) to denote
the probability distribution over trajectories for policy π.
Episodes have T steps, which we summarize as a trajectory
τ = (o1, a1, · · · , sT , aT ). Without loss of generality, we
can assume that rewards are undiscounted, as any discount
can be addressed by modifying the dynamics to transition to
an absorbing state with probability 1 − γ. The standard RL
objective is: argmaxπ Eτ∼pπ(τ)[

∑T
t=1 r(st, at)].

3. METHODOLOGY

In this section, we present our method SRL-AR, from both
theoretical and empirical perspectives. First, we propose
self-supervised state-action abstraction ϕ(s) based on return
distribution. Then we consider an auxiliary reward design
method, which enables us to calculate auxiliary reward raux

from the samples collected using the state-action abstraction.
After that, we introduce return-based contrastive representa-
tion learning for RL that incorporates standard RL algorithms
with the auxiliary self-supervised state-action abstraction
learning task. Figure 2 illustrates the proposed method.

3.1. Self-Supervised State-Action Abstraction

We extend the Zπ-irrelevance observation-action pair’s ab-
straction [16] based on observation dataset D with a con-
trastive loss (see Algorithm 1). We can sample state-action
pairs from the trajectories generated by the policy π. Given

State s Action a
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Actor
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Fig. 2: An overview of SRL-AR. The auxiliary task is based
on the state-action embedding.

a policy π, Zπ-irrelevance abstraction is denoted as ϕ(s, a)
such that, for any (s1, a1), (s2, a2) ∼ D with ϕ(s1, a1) =
ϕ(s2, a2), we have Zπ(s1, a1) = Zπ(s2, a2). Thus, there
exists a function Q : ϕ(s, a) → R, such that |Q(ϕ(s, a)) −
Qπ(s, a)| ≤ (Rmax −Rmin)/K.

Algorithm 1 Self-Supervised State-Action Abstraction

Require: Given the policy πpre, the encoder ϕ, the discrimi-
nator w, and the number of bins for the return K
Roll-out the current policy π and store the samples to the
replay buffer B
D = ∅
for i = 1 · · ·n do

Draw a batch of samples D from the replay buffer B
Draw state-action pairs {(s1, a1), (s2, a2)} ∼ D
Calculate R1 = Zπ(s1, a1) and R2 = Zπ(s2, a2)
D = D ∪ {((s1, a1, s2, a2),1[b(s1, a1) ̸= b(s2, a2)])}

end for
Calculate the loss function L(ϕθ, wν ;DOOD)
Update ϕ and w with loss function

We maintain the binary label y for this state-action pair,
which indicates whether the two returns belong to the same
bin. Besides, we introduce a distance-constraint item to
enforce the Zπ-irrelevance abstraction ϕ(s, a) in bins with
larger rewards to be closer. We denote the bins with larger
rewards as B+. Thus, the rest bins are B− = B/B+, which
may contain OOD situations. The hierarchical contrastive
loss is defined as follows:

min
ϕ,w

L(ϕ,w;D) :=E(s,a,y)∼D
[
(w(ϕ(s1, a1), ϕ(s2, a2))− y)2

]
+ λ1dis(ϕ

+(s1, a1), ϕ
+(s2, a2))

− λ2dis(ϕ
+(s1, a1), ϕ

−(s2, a2)) (1)
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3.2. Auxiliary Reward

Principled on SAC [17], we consider a parameterized Q-
function Qθ(st, at). By minimizing the objectives in Equa-
tion 1, the agent is retrained to return to the learned state
distribution from an OOD state by using the proposed auxil-
iary reward while being regularized by KL-divergence not to
forget the original tasks.

The agent may receive an auxiliary reward when taking
an action that minimizes the distance between next state and
states in B+, shown in Equation 2. Accordingly, by maximiz-
ing the expected cumulative auxiliary reward, the agent can
learn how to stay away from OOD states and return to the
learned state distribution.

raux(st, at) = α · dis(ϕ(st, at),B
−)

dis(ϕ(st, at),B+)
(2)

3.3. Retraining with Auxiliary Task

The auxiliary task based RL algorithm is called SRL-AR and
shown in Algorithm 2. While Zπ-irrelevance learning relies
on a dataset sampled by rolling out the trained policy πpre,
SRL-AR constructs such a dataset using the samples collected
by the base RL algorithm and therefore does not require ad-
ditional samples.

Algorithm 2 Retraining

Require: Policy πpre, Q-function Qθ, replay buffer B, and
the embedding ϕ
for each iteration do

Rollout the current policy π and store the samples to
the replay buffer B

Draw a batch of samples D from the replay buffer B
Update the policy πpre with auxiliary rewards and KL-

loss
end for

During retraining, for each sample in replay buffer,
we first draw N positive anchor state-action pairs from
each b ∈ B+ randomly to calculate dis(ϕ(st, at),B+) =∑

|B+|
∑N

i=1 dist(ϕ(st, at), ϕ(si, ai)). Afterwards, we gen-
erate a OOD sample by drawing state-action pairs randomly
from b ∈ B− and calculate dis(ϕ(st, at),B−). When the ϕ
network assigns similar representations to similar state-action
pairs, the update for one state-action pair is representative for
the updates for other similar state-action pairs, which im-
proves sample efficiency. Meanwhile, state-action pairs with
higher rewards indicate the direction to explore, which effec-
tively improve the recovery performance. In order to prevent
the agent from unstable learning during the retraining phase,
we adopt KL-loss as follows:

Lstable = β ·DKL(π(s, a)∥πpre(s, a)) (3)

(a) Training environments

(b) Retraining environments

Fig. 3: Training environments (a) and retraining environ-
ments (b). From left: HalfCheetah-v2, Ant-v2, Walker2D-v2,
and Hopper-v2.

4. EXPERIMENTS

In this section, we conduct extensive experiments on MuJoCo
tasks [18], which provide RL environments related to robotics
and continuous control tasks, to analyze the effectiveness of
the proposed method.

4.1. Experiment Setting

Environments: To evaluate our method, we modify the origi-
nal environments to implement training environments and re-
training environments separately as shown in Figure 3. In
the retraining environments, we specifically highlight that a
trained agent is initialized in a state not encountered during
the training phase. For clarity, in our experiments we refer to
states in the training environment as normal states, and states
outside this defined set as OOD states, representing the re-
maining space of possible states. In the training phase, the
episode ends if the agent flips over. In the retraining phase,
the agent is initially spawned in an upside-down position. To
return to the trained state distribution, the agent should learn
how to turn its body over.

Baselines: To evaluate the improvement of the agent’s
ability to recover from OOD situations, We compare our
method to several RL algorithms for continuous control tasks,
including SeRO [15] and SAC [17]. Note that SRL-AR is im-
plemented by expanding SAC.

4.2. Main Results

Figure 4 shows the cumulative rewards of the SAC algorithm
on all tasks during the training phase. However, we are more
concerned about whether the policy can effectively handle
OOD states in the early stage of retraining and transition to
normal states. As shown in Figure 5, it illustrates the changes
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(b) AntNormal-v2
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(c) Walker2DNormal-v2
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(d) HopperNormal-v2

Fig. 4: Learning curves in the training environments.

0 5 10 15 20 25 30 35 40
Episode

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e 

Ep
is

od
e 

R
ew

ar
d

Cumulative Episode Reward In RE-Training Phase

SRL-AR
SeRO
SAC

(a) HalfCheetahOOD-v2
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(b) AntOOD-v2
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(c) Walker2DOOD-v2
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Fig. 5: Learning curves in the retraining environments.

in policy rewards during the early stages of retraining envi-
ronments. We emphasize that the learning curve in the re-
training phase is computed by setting the reward in the OOD
state to zero. When we apply the trained policy to OOD sit-
uations (retraining phase), the results show SAC agent fails
to recover from OOD states on all tasks. Meanwhile, both
SRL-AR and SeRO can effectively recover from OOD states,
but SRL-AR shows higher sample efficiency and average cu-
mulative reward than SeRO. Table 1 shows the quantitative
results of all the methods. The convergence value of SRL-AR
is close to the value in the training phase. We attribute this
to our approach’s ability to limit the extent of policy updates
while ensuring effective rewards are obtained.

Table 1: Cumulative reward achieved by SRL-AR and base-
lines (SeRO, SAC) after the retraining phase.

Task SRL-AR SeRO SAC

HalfCheetah-v2 11377.96 ± 371.65 11467.76 ± 764.58371.59 ± 452.76
Ant-v2 5862.46 ± 802.36 5479.12 ± 877.46 151.37 ± 97.14

Walker2D-v2 3832.76 ± 332.19 3648.29 ± 412.32 137.49 ± 82.48
Hopper-v2 3531.93 ± 219.75 3354.76 ± 378.24 114.83 ± 76.56

4.3. Ablation Studies

To analyze the effect of each component of our method, we
perform an ablation study to assess two variants in the re-
training phase, including the proposed method that only uses
auxiliary reward and is regularized by KL-loss, the results of
which are presented in Table 2. Note that the regularization

receives zero rewards instead of auxiliary rewards in OOD
states. The results show that although the method only im-
plementing auxiliary reward does not achieve the best per-
formance, it can also return to within the learned state dis-
tribution, and the cumulative reward can converge to a high
value. It is difficult to return to the learned state distribution
using regularization alone. However, according to the previ-
ous experimental results, regularization plays a certain role in
maintaining the learning stability of SRL-AR.

Table 2: Cumulative reward achieved of the ablation studies.

Task Auxiliary Reward Regularization

HalfCheetah-v2 9374.96 ± 513.65 2113.48 ± 602.16
Ant-v2 4367.59 ± 753.47 2479.23 ± 865.52

Walker2D-v2 3814.35 ± 319.31 1732.60 ± 523.79
Hopper2D-v2 2932.81 ± 428.20 2468.59 ± 921.46

5. CONCLUSION

In this paper, we propose SRL-AR, a self-supervised rein-
forcement learning approach for recovering from OOD situa-
tions. By incorporating standard RL algorithms with the aux-
iliary self-supervised state-action abstraction learning task,
SRL-AR enables RL agent to handle OOD states. Our exper-
imental results demonstrate that SRL-AR effectively enables
the agent to recover from OOD situations, and outperforms
prior works in the sample efficiency.
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